In this article I should like to discuss the development of general physical theory: how it developed in the past and how one may expect it to develop in the future. One can look on this continual development as a process of evolution, a process that has been going on for several centuries. The first main step in this process of evolution was brought about by Newton. Before Newton, people looked on the world as being essentially two-dimensional-the two dimensions in which one can walk about-and the up-and-down dimension seemed to be something essentially different. Newton showed how one can look on the up-and-down direction as being symmetrical with the other two directions, by bringing in gravitational forces and showing how they take their place in physical theory. One can say that Newton enabled us to pass from a picture with two-dimensional symmetry to a picture with three-dimensional symmetry. Einstein made another step in the same direction, showing how one can pass from a picture with three-dimensional symmetry to a picture with fourdimensional symmetry. Einstein brought in time and showed how it plays a role that is in many ways symmetrical with the three space dimensions. However, this symmetry is not quite perfect. With Einstein's picture one is led to think of the world from a four-dimensional point of view, but the four dimensions are not completely symmetrical. There are some directions in the four-dimensional picture that are different from others: directions that are called null directions, along which a ray of light can move; hence the four-dimensional picture is not completely symmetrical. Still, there is a great deal of symmetry among the four dimensions. The only lack of symmetry, so far as concerns the equations of physics, is in the appearance of a minus sign in the equations with respect to the time dimension as compared with the three space dimensions (four-dimensional symmetry equation and Schrodinger's equations.) We have, then, the development from the three-dimensional picture of the world to the four-dimensional picture. The reader will probably not be happy with this situation, because the world still appears three-dimensional to his consciousness. How can one bring this appearance into the four-dimensional picture that Einstein requires the physicist to have? What appears to our consciousness is really a three-dimensional section of the four-dimensional picture. We must take a three-dimensional section to give us what appears to our consciousness at one time; at a later time we shall have a different three-dimensional section. The task of the physicist consists largely of relating events in one of these sections to events in another section referring to a later time. Thus the picture with fourdimensional symmetry does not give us the whole situation. This becomes particularly important when one takes into account the developments that have been brought about by quantum theory. Quantum theory has taught us that we have to take the process of observation into account, and observations usually require us to bring in the three-dimensional sections of the four-dimensional picture of the universe. The special theory of relativity, which Einstein introduced, requires us to put all the laws of physics into a form that displays four-dimensional symmetry. But when we use these laws to get results about observations, we have to bring in something additional to the four-dimensional symmetry, namely the three-dimensional sections that describe our consciousness of the universe at a certain time. Einstein made another most important contribution to the development of our physical picture: he put forward the general theory of relativity, which requires us to suppose that the space of physics is curved. Before this physicists had always worked with a flat space, the three-dimensional flat space of Newton which was then extended to the fourdimensional flat space of special relativity. General relativity made a really important contribution to the evolution of our physical picture by requiring us to go over to curved space. The general requirements of this theory mean that all the laws of physics can be formulated in curved four-dimensional space, and that they show symmetry among the four dimensions. But again, when we want to bring in observations, as we must if we look at things from the point of view of quantum theory, we have to refer to a section of this four-dimensional space. With the four-dimensional space curved, any section that we make in it also has to be curved, because in general we cannot give a meaning to a flat section in a curved space. This leads us to a picture in which we have to take curved threedimensional sections in the curved fourdimensional space and discuss observations in these sections. During the past few years people have been trying to apply quantum ideas to gravitation as well as to the other phenomena of physics, and this has led to a rather unexpected development, namely that when one looks at gravitational theory from the point of view of the sections, one finds that there are some degrees of freedom that drop out of the theory. The gravitational field is a tensor field with 10 components. One finds that six of the components are adequate for describing everything of physical importance and the other four can be dropped out of the equations. One cannot, however, pick out the six important components from the complete set of 10 in any way that does not destroy the four-dimensional symmetry. Thus if one insists on preserving four-dimensional symmetry in the equations, one cannot adapt the theory of gravitation to a discussion of measurements in the way quantum theory requires without being forced to a more complicated description than is needed bv the physical situation. This result has led me to doubt how fundamental the four-dimensional requirement in physics is. A few decades ago it seemed quite certain that one had to express the whole of physics in fourdimensional form. But now it seems that four-dimensional symmetry is not of such overriding importance, since the description of nature sometimes gets simplified when one departs from it. Now I should like to proceed to the developments that have been brought about by quantum theory. Quantum theory is the discussion of very small things, and it has formed the main subject of physics for the past 60 years. During this period physicists have been amassing quite a lot of experimental information and developing a theory to correspond to it, and this combination of theory and experiment has led to important developments in the physicist's picture of the world. The quantum first made its appearance when Planck discovered the need to suppose that the energy of electromagnetic waves can exist only in multiples of a certain unit, depending on the frequency of the waves, in order to explain the law of black-body radiation. Then Einstein discovered the same unit of energy occurring in the photoelectric effect. In this early work on quantum theory one simply had to accept the unit of energy without being able to incorporate it into a physical picture. The first new picture that appeared was Bohr's picture of the atom. It was a picture in which we had electrons moving about in certain well-defined orbits and occasionally making a jump from one orbit to another. We could not picture how the jump took place. We just had to accept it as a kind of discontinuity. Bohr's picture of the atom worked only for special examples, essentially when there was only one electron that was of importance for the problem under consideration. Thus the picture was an incomplete and primitive one. The big advance in the quantum theory came in 1925, with the discovery of quantum mechanics. This advance was brought about independently by two men, Heisenberg first and Schrodinger soon afterward, working from different points of view. Heisenberg worked keeping close to the experimental evidence about spectra that was being amassed at that time, and he found out how the experimental information could be fitted into a scheme that is now known as matrix mechanics. All the experimental data of spectroscopy fitted beautifully into the scheme of matrix mechanics, and this led to quite a different picture of the atomic world. Schrodinger worked from a more mathematical point of view, trying to find a beautiful theory for describing atomic events, and was helped by De Broglie's ideas of waves associated with particles. He was able to extend De Broglie's ideas and to get a very beautiful equation, known as Schrodinger's wave equation, for describing atomic processes. Schrodinger got this equation by pure thought, looking for some beautiful generalization of De Broglie's ideas, and not by keeping close to the experimental development of the subject in the way Heisenberg did. I might tell you the story I heard from Schrodinger of how, when he first got the idea for this equation, he immediately applied it to the behavior of the electron in the hydrogen atom, and then he got results that did not agree with experiment. The disagreement arose because at that time it was not known that the electron has a spin. That, of course, was a great disappointment to Schrodinger, and it caused him to abandon the work for some months. Then he noticed that if he applied the theory in a more approximate way, not taking into ac count the refinements required by relativity, to this rough approximation his work was in agreement with observation. He published his first paper with only this rough approximation, and in that way Schrodinger's wave equation was presented to the world. Afterward, of course, when people found out how to take into account correctly the spin of the electron, the discrepancy between the results of applying Schrodinger's relativistic equation and the experiments was completely cleared up. I think there is a moral to this story, namely that it is more important to have beauty in one's equations than to have them fit experiment. If Schrodinger had been more confident of his work, he could have published it some months earlier, and he could have published a more accurate equation. That equation is now known as the Klein-Gordon equation, although it was really discovered by Schrodinger, and in fact was discovered by Schrodinger before he discovered his nonrelativistic treatment of the hydrogen atom. It seems that if one is working from the point of view of getting beauty in one's equations, and if one has really a sound insight, one is on a sure line of progress. If there is not complete agreement between the results of one's work and experiment, one should not allow oneself to be too discouraged, because the discrepancy may well be due to minor features that are not properly taken into account and that will get cleared up with further developments of the theory. That is how quantum mechanics was discovered. It led to a drastic change in the physicist's picture of the world, perhaps the biggest that has yet taken place. This change comes from our having to give up the deterministic picture we had always taken for granted. We are led to a theory that does not predict with certainty what is going to happen in the future but gives us information only about the probability of occurrence of various events. This giving up of determinacy has been a very controversial subject, and some people do not like it at all. Einstein in particular never liked it. Although Einstein was one of the great contributors to the development of quantum mechanics, he still was always rather hostile to the form that quantum mechanics evolved into during his lifetime and that it still retains. The hostility some people have to the giving up of the deterministic ...