Welcome, guest. You are not logged in.
Log in or join for free!
Stay logged in
Forgot login details?

Stay logged in

For free!
Get started!

Multimedia gallery


In physics, a wormhole (also known as Abbreviated Space) is a hypothetical topological feature of spacetime that is essentially a "shortcut" or "abbreviation" through space and time. A wormhole has at least two mouths which are connected to a single throat. If the wormhole is traversable, matter can 'travel' from one mouth to the other by passing through the throat.

The name "wormhole" comes from an analogy used to explain the phenomenon. If a worm is travelling over the skin of an apple, then the worm could take a shortcut to the opposite side of the apple's skin by burrowing through its center, rather than travelling the entire distance around, just as a wormhole traveller could take a shortcut to the opposite side of the universe through a hole in higher-dimensional space.


There is a compact region of spacetime whose boundary is topologically trivial but whose interior is not simply connected. Formalizing this idea leads to definitions such as the following, taken from Matt Visser's Lorentzian Wormholes:

If a Lorentzian spacetime contains a compact region Ω, and if the topology of Ω is of the form Ω ~ R x Σ, where Σ is a three-manifold of nontrivial topology, whose boundary has topology of the form dΣ ~ S², and if furthermore the hypersurfaces Σ are all spacelike, then the region Ω contains a quasipermanent intra-universe wormhole.

Characterizing inter-universe wormholes is more difficult. For example, one can imagine a 'baby' universe connected to its 'parent' by a narrow 'umbilicus'. One might like to regard the umbilicus as the throat of a wormhole, but the spacetime is simply connected.

Wormhole types

Intra-universe wormholes connect one location of a universe to another location of the same universe (in the same present time). A wormhole should be able to connect distant locations in the universe by bending spacetime, allowing travel between them that is faster than it would take...

This page:

Help/FAQ | Terms | Imprint
Home People Pictures Videos Sites Blogs Chat